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Introduction
The SARS-CoV-2 is the causative agent of the coronavirus disease 2019 with severe 

public health consequences and million deaths [1-9]. The novel SARS-CoV-2 shares nearly 
96% similarity to the bat coronavirus isolate RaTG13, suggesting these animals are the likely 
natural reservoir of the virus [10,11]. Thus, different animal, birds and whale corona viruses 
were known since 2003 but human corona viruses were appeared in December 2019 at Wuhan 
province of China. So far million coronaviruses RNA were sequenced and divided into Alpha, 
Beta, Delta, Gamma etc. as well as Omicron variants with mutations, deletions and insertions 
[12-18]. There were many differences in pathogenic potential and immunogenicity among 
those VOCs. SARS-CoV-2 is a large positive-stranded RNA virus with round 30000 nucleotides 
genome (Figure1). It has structural proteins Membrane (M), Envelope (E), Nucleocapsid 
(N), Spike (S) coded from 3’-1/3 part of the virus independently, but RNA-dependent RNA 
polymerase was coded from nsp12 domain of ORF1ab polyprotein coded from 2/3 of the 
5’-parts of the genome and such polyprotein was degraded into sixteen polypeptides (nsp1-
nsp16). The nsp2 protein is RNA topoisomerase with new therapeutic target whereas Nsp3 
and nsp5 are proteases that cleave polyprotein into sixteen polypeptides with diverse 
functions [18-23]. The nsp6, nsp7, nsp8, nsp9 and nsp10 were small accessory proteins 
involved in RNA polymerase replication complex. The nsp14 and nsp15 are ribonucleases 

Crimson Publishers
Wings to the Research

Research Article

*Corresponding author: Asit Kumar 
Chakraborty, Department of Biotechnology 
and Biochemistry, Oriental Institute of Science 
and Technology-West Bengal, Vidyasagar 
University, India
E mail: chakraakc@gmail.com

Submission:  June 13, 2023
Published:  August 03, 2023

Volume 6 - Issue 5

How to cite this article: Asit Kumar 
Chakraborty*. Highly Infectious, Less 
Pathogenic and Antibody Resistant 
Omicron Xbb.1, Xbb.1.5 and Xbb.1.5.1-
Xbb.1.5.39 Subvariant Coronaviruses 
Do Not Produce Orf8 Protein Due To 
8th Codon Gga=Tga Termination Codon 
Mutation. Cohesive J Microbiol Infect Dis. 
6(5). CJMI. 000648. 2023.
DOI: 10.31031/CJMI.2023.06.000648

Copyright@ Asit Kumar Chakraborty. 
This article is distributed under the terms 
of the Creative Commons Attribution 4.0 
International License, which permits 
unrestricted use and redistribution 
provided that the original author and 
source are credited.

ISSN: 2578-0190

1Cohesive Journal of Microbiology & Infectious Disease

Summary
RNA viruses are very mutation prone. We recently reported SARS-CoV-2 ORF8 gene CAA=TAA and 
AAA=TAA Termination Codon Mutations in B.1.1.7 variants with no production of viable ORF8 protein. 
We described here another GGA=TGA termination codon in the 8th codon of ORF8 gene located exclusively 
in XBB.1 (XBB.1.16 and XBB.1.22) and XBB.1.5 subvariants (XBB.1.5.1 to XBB.1.5.39) but not in XBB.2 
variant or Alpha, Beta, Gamma, Delta and Omicron BA.1, BA.2, BA.4, BA.5, BF.7 and BQ.1 subvariants. 
However, G>T mutation at 27915 also created an alternate ATG codon but the protein product was short 
due to preceding TAG and TGA termination codons. The originally located following ATG codons were 
there but in alternate reading frames and ultimately no ORF8 protein was formed in XBB.1.5 subvariants 
which were spreading highly now over BA.2.75, BA.4.6, BA.5.2.1, BF.7 and BQ.1.1 subvariants. This 
is a vivid example of three termination codon mutations in the coronavirus ORF8 protein which was 
implicated as target for many human proteins regulating interferon production, chromosome instability, 
antibody production, patho genicity and virus clearance. The 30nt deletion in the 3’-UTR, including 24LPP, 
and 145Y deletions in Spike protein as well as N-protein 31ERS and ORF1ab polyprotein 3675SGF deletions 
made XBB.1.5 Omicron coronavirus weak and less pathogenic so that WHO declared coronaviruses as 
non-emergency pathogen.

Keywords: Termination codon mutants; ORF8 protein; COVID-19; Immunomodulation; Higher 
transmission; Lower pathogenicity
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and nsp16 is 2’-O methyltransferase and nsp13 is RNA helicase and 
may have capping methyl transferase activity. The ORF3a, ORF6, 

ORF7a/7b, ORF8 and ORF10 small proteins also coded from 3’ end 
of the genome and have roles in regulating cellular genes. 

Figure 1: Structure of Omicron corona virus with polypeptides (A), nucleotide sequence of ORF8 gene (B) and ORF8 
protein sequence with three termination codons detected (C).

In USA, Wuhan-D614G mutant first peak between March-
August 2020, Alpha (B.1.1.7) 2nd peak with spike 69HV deletion 
immune-escape mutant between January-June 2021 followed by 
3rd peak of Delta (B.1.617.2, AY.X) with spike 157FR deletion mutant 
between June to December 2021 [24]. Since last week of December 

2022 4th peak of Omicron BA.1 variant (B.1.1.519) spread was 
evident followed by BA.2 variant spread since April 2022 with 29 
mutations in the spike. From June-July 2022, Omicron BA.4/BA.5 
variants were dominating worldwide followed BF.7, BQ.1, BQ.1.1, 
XBB.1 and XBB.1.5 subvariants recently (Figure 2). 

Figure 2: Distribution and sequencing data comparison for COVID-19 in the United Kingdom.

The Spike protein (1273AA) of COVID-19 had gone extensive 
mutations and deletions than large polyprotein ORF1ab (7096aa) 
particularly in Omicron lineages. The spike 24LPP, 69HV, 143VYY, 
157FR, 212L and 145Y deletions were detected in different proportion 
whereas 215EPE and 249RWMD insertions were also reported in 
Omicron BA.1 variant and BQ.1 variant respectively [25-29]. Among 
the ORF1ab deletions, 141KSF deletion in nsp1 domain was found 
only in omicron BA.4 subvariants and 3674LSG deletion found in 
omicron BA.1 subvariant whereas 3675SGF deletion in nsp6 domain 
was found in most Omicron (BA.1, BA.2, BA.4, BA.5) and Alpha 
(B.1.1.7) variants. Dominant point mutations D614G and N501Y 
were important for higher transmission whereas ~20 mutations 
in the RBD domain of Omicron were not found in deadly B.1.1.7, 
B.1.617.2 and AY.103 variants. The E484A, T478K, L452R and 
K417N/T mutations were very immune-modular and such mutant 

viruses were refractory to antibodies of patients. 

More than a few dozen spike mutations were recently detected 
in XBB.1.5 and BQ.1.1.1 subvariants. However, Omicron variants 
were less pathogenic and usually did not require oxygen support 
and hospitalization unless co-morbidity [30]. Still pneumonia, chest 
pain, confusion, and headache with cough and cold, were different 
symptoms that affected over 650 million people worldwide. The 
gradual changes in different SARS-CoV-2 variants since 2019 was 
shown in Figure 3. Presently, infectivity of XBB.1.5 subvariant 
was dominating worldwide but very mild symptoms due to huge 
mutations in spike and deletion of 26nt 3’-UTR. However, the titer 
of such deleted coronaviruses was low and their spread may be 
due to better interaction with ACE-2 receptor and reinfections of 
patients [31-36].
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Figure 3: Conversion of Wuhan B.0 coronavirus into Omicron viruses like BQ.1.1.1 and XBB.1.5.3 types of sub 
subvariants.

Accumulating evidence suggested that small regulatory 
proteins (ORF3a, ORF7a, ORF8) of SARS-CoV-2 interacted highly 
with many cellular proteins. Preliminary 3-D graphics interactive 
studies indicated few dozen proteins like PVR, IRF3, ATF6, Beclin 
1, FK506-binding protein 10, EDEM, vitronectin, OPJ94, Sec62163, 
VIP36, TRFT3 and PLAT etc interacted with ORF8 protein regulating 
protein folding, apoptosis and interferon production. Such process 
likely favours COVID-19 survival in host cells inhibiting immune 
control mechanisms [37]. Genetic analysis pointed a severe deletion 
in ORF8 (Δ382) caused less severe corona infections likely due to 
low viral load with increased immune clearance. 

However, in cell culture study with such deletion mutant 
contradicted the finding of lower viral load with no change of 
cellular transcriptional profile. The ORF8 protein also mediates 
immune evasion by downregulating MHC-I molecules like HLA-A2 
[38]. The IgG domains similarity of ORF8 protein may be important 
to modulate host immune functions and chromatin structure. 
The C>T base change at 27972nt and another A>T base change at 
28095nt created two termination codons (CAA=TAA and AAA=TAA) 
to produce 26AA and 67AA long ORF8 truncated proteins. Similar 
Blast-N search with mutated oligonucleotides detected many ORF8 
mutants with distinct S24L, V32L, P38S, R52I, A65V, Y73C, L84S, 
K92E and V100L mutations with or without TAA termination 
mutations [39]. 

During our database search to characterize the XBB.1.5 
lineages, we noticed no expression data for ORF8 protein in the 
genomic sequences. As we already known the two termination 
codons in ORF8 gene of Alpha variants, we searched the similar 
termination codon mutation in XBB-related variants which 
originated from BA.2.10 and BA.2.75 recombination and mutation 
[39-46]. We detected here a new termination codon mutation in 
ORF8 gene of XBB.1 lineage but not in XBB.2 lineage. Spike protein 
mutations and deletions had affected Omicron coronaviruses and 
for transformation of BA.2 to BA.2.75 required K147E, W152R, 
F157L, I210V, G257S, D339H, G446S, N460K and Q493R mutations 
in the spike protein and BA.2.75 was originated in 31.12.2021. Gene 
rearrangement and deletion in the 5’-UTR and 3’-UTR were also 
demonstrated in different SARS-CoV-2 variants. The article was 
deposited in Research Square preprint on 30th May 2023.

Methods
We searched PubMed to get an idea on published papers on 

ORF8 and searched SARS-CoV-2 NCBI database using BLAST-N and 
BLAST-X search methods. Multi-alignment of protein was done by 
Mult Alin software and multi-alignment of DNA by CLUSTAL-Omega 
software. 1st impression of ORF8 mutants was gained by Blast N 
searching of deletion boundary of 120nt sequence and analyzing 
the sequences with 90-100% similarities. Blast X search of ORF8 
full length gene used to get mutant ORF8 proteins with or without 
termination codon. Then, the other ORF8 mutants were detected by 
Blast-N search of TAA mutant oligos as well as other oligos selected 
from point mutation boundaries [47,48]. The hairpin structure of 
ORF8 gene 222nt 5’-terminal sequence was done by Oligo Analyzer 
3.1 software (Integrated DNA Technologies). The protein 3-D 
structure was determined by SWISS-Model software [49-61].

Result
In Table 1, we showed XBB.1.5. subvariants specific changes in 

the coronavirus proteins whereas K304Q and A411S two important 
mutations in the RBD of spike of XBB.1.5.3 sub-subvariant might 
be significant. Similarly, XBB.1.5.29 and XBB.1.5.30 had A348V 
and A348T mutations in the spike but roles of such mutations 
had to be tested yet. The never-the-less dominant common F486P 
spike mutation was implicated in antibody evasion and higher 
transmission in XBB.1.5 subvariants. We found six mutations 
(P2045S, T2137A, A3697V, T5941I, H5951Y, P6376S) in ORF1ab 
polyprotein of XBB.1.5.30 subvariant and four different mutations 
(S1188L, P2045L, P2110S, N6481K) in XBB.1.5.20 which also 
harboured A398V mutation in the N-protein (Table 1). Three 
spike mutations (P463S, E554K, P1162S) in XBB.1.5.8 might be 
significant and the penetration of such subvariant in the database 
was low. Similarly, four spike mutations (V83S, Y200C, V382L, 
T573I) in the XBB.1.22.1 subvariant was reported in Table 1. 
Interestingly, we detected total eight mutations in N-protein of 
XBB.1.5.sub-subvariants: R10Q in XBB.1.5.8, G25C in XBB.1.5.16, 
D81H in XBB.1.5.38, I131R in XBB.1.5.3, R195I in XBB.1.5.19, 
P279L in XBB.1.5.28, S327L in XBB.1.5.9 and A398V in XBB.1.5.20. 
Mutation rate was higher in recent coronavirus isolates (BQ.1.1.1 
and XBB.1.5.1) and we also found four distinct mutations in ORF3A 
trans-activator protein: G49C in XBB.1.5.21, S92L in XBB.1.5.2, 
G172D in XBB.1.5.38 and H182Y in XBB.1.5.27 [61-68].
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Table 1: Demonstration of major mutations in Omicron XBB.1.5.1-XBB.1.5.39 sub subvariants. XBB.1.5.26 (OQ783732) 
and XBB.1.5.31 (OQ758970) have no mutation in our search as stated here (ORF1ab, Spike, N, M, E, Orf3A) and also 
other small ORF proteins. No M protein was conserved but A63T mutation was found in all omicron variants and a D3G 
mutation in BA.1 variant and a I82T mutation in Iota variant were detected.

Acc. no. Sub Subvariants ORF1ab Spike N E Orf3A

OP699966 BA.2.75 S1221L K444T

OQ080316 XBB G82D V83A

OQ244648 XBB.1 T2906I G252V

OQ681889 XBB.1.5 D3196G F486P*

OQ748396 XBB.1.5.1 K714R T573I

OQ748682 XBB.1.5.2 S3309P K147I, T284I S92L

OQ748578 XBB.1.5.3 S2048F K304Q, A411S I131R

OQ759166 XBB.1.5.4 T883I

OQ748550 XBB.1.5.5 T1822I, S2246l T523A, K1181I

OQ783432 XBB.1.5.6 S3158G

OQ748657 XBB.1.5.7 V4649F

OQ727842 XBB.1.5.8 L3116F P463S, E554K, P1162S R10Q

OQ782510 XBB.1.5.9 R560C S327L

OQ748526 XBB.1.5.10 A6044V F456L

OQ748511 XBB.1.5.11 G401S

OQ748664 XBB.1.5.12 S2285F Q146K

OQ748399 XBB.1.5.13 Q146K, V1104L

OQ782367 XBB.1.5.14 R442C

OQ748855 XBB.1.5.15 P5377S, S5674L Q146K

OQ782329 XBB.1.5.16 F6058L E180V G25C

OQ782359 XBB.1.5.17 V62F

OQ734082 XBB.1.5.18 T2300I, P4619L

OQ782733 XBB.1.5.19 L3754F, A2128T, R4573C R195I

OQ748528 XBB.1.5.20 S1188L, P2045L, P2110S, N6481K, A398V

OQ748813 XBB.1.5.21 K322R G49C

OQ783157 XBB.1.5.22 S167C S247I

OQ783778 XBB.1.5.23 N375S, P4220L, T5690A

OQ802664 XBB.1.5.24 A2584V

OQ783570 XBB.1.5.25 V665F, A1812D K97T

OQ748846 XBB.1.5.27 E1015G K478R H182Y

OQ748750 XBB.1.5.28 K478R P279L

OQ759251 XBB.1.5.29 L3808F, A6832V A348V, G932S

OQ748271 XBB.1.5.30 P2045S, T2137A, A3697V, T5941I, 
H5951Y, P6376S A348T

OQ748566 XBB.1.5.32 T2823I, Q3966R

OQ783474 XBB.1.5.33 A138V, S5583L

OQ748615 XBB.1.5.34 T1754I T696S, C1253F

OQ748647 XBB.1.5.35 S98F

OQ782439 XBB.1.5.36 L293F A475V, T547K

OQ782618 XBB.1.5.37 E148G K1045R

OQ808416 XBB.1.5.38 T403I D81H G172D

OQ783588 XBB.1.5.39 S538L, M3684T, E4388G Q52H, G1167V

After the demarcation of XBB.1.5 sub-subvariants, we did 
multi-alignment analysis to pinpoint the genetic changes and if 
ORF8 termination codon mutation happened in all those sub-

subvariants. For multi-alignment, we choose B.o, B.1.1.7, B.1.617.2, 
BF.7, BA.2.75 and BQ.1 as standard variant and subvariant whereas 
few XBB.1.5 sub-subvariants as experimental [69]. In truth, we 
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checked all XBB.1.5.1 to XBB.1.5.39 sub-subvariants for negative 
ORF8 expression in the database. Figure 4 stated that ORF8 gene 
mutation (GGA=TGA) in all XBB.1.5.1 sub-subvariants but not in 
XBB.2 as well as standard variants. We put standard CAA=TAA 
termination codon mutant (accession no. OP711844) and standard 

AAA=TAA termination codon mutant (accession no. OP683545) 
belonging to Alpha (B.1.1.7) variant for comparison and all three 
termination codon mutants did not produce viable ORF8 protein 
to interact and modulate host genes involved in interleukins 
expression and immune modulation [70-75].

Figure 4: Localization of three termination codon mutants in ORF8 gene of SARS-CoV-2.

We checked the 3675SGF dominant deletion in the nsp6 domain 
of ORF1ab polyprotein and except in Wuhan and Delta, all Omicron 

(BA.1/2/4/5, BF.7, BQ.1, XBB.1) and Alpha (B.1.1.7) lineages had 
such deletion (Figure 5). Similarly, we checked the nsp1 deletions 
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in XBB.1.5 and no such deletion was found (Figure 6). Astonishingly, 
we detected a B.1.1.7 alpha variant with GHVMV deletion which 
also had ORF8 termination codon mutation (accession no. 
OP711844). Next, we determined if there was any Spike deletion 
in XBB.1.5 subvariants. Spike 24LPP deletion was found in BA.2 
lineages including BA.2.75, XBB, XBB.1, XBB.1.5 (Figure 7) but no 

69HV deletion. On the contrary, both 24LPP and 69HV spike deletions 
were found in BQ.1, BF.7, BA.4/5 but not in Delta variant whereas 
only 69HV deletion found in Alpha variant. We also demonstrated 
that BA.2.75, XBB, XBB.1 and XBB.1.5 subvariants had N501Y 
mutation (Figure 8) and D614G mutation both of which increased 
transmission to over 100% than Wuhan virus. 

Figure 5: Demonstration of all omicrons including XBB, XBB.1, XBB.2 and XBB.1.5 subvariants as well as Alpha 
variant had SGF deletion in nsp6 protein but Delta and Wuhan.

Figure 6: Demonstration of absence of GHVMV and KSF deletions in nsp1 protein of XBB.1.5 subvariants.
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Figure 7: Demonstration of Spike deletion in XBB.1.5 subvariants. Spike 24LPP deletion found in BA.2 lineages 
including BA.2.75, XBB, XBB.1, XBB.1.5 (A) but no spike 69HV deletion (B). The 69HV deletion was also found in 

Alpha, BQ.1, BF.7, BA.4 but not in Delta variant.

Figure 8: Multi-alignment demonstration that genomes of BA.2.75, XBB, XBB.1 and XBB.1.5 subvariants had 
N501Y mutation similar to B.1.1.7 (A) and D614G mutation similar to B.1.1.7, B.1.617.2 and others (B). Delta 

variant had D614G mutation but not N501Y mutation. Wuhan related early corona viruses (B.0, B.1, B.1.1) had no 
both D614G and N501Y mutations.
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The deadly Delta varianN501YG mutation but no N501Y 
mutation whereas control 2019 Wuhan virus (B.0) had no D614G 
and N501Y both mutations. Previously, we showed that N-protein 
31ERS three amino acids deletion was prominent in Omicron variants 
starting from B.1.1.529 variants including BA.2, BA.2.9, BA.2.75 and 
BA.2.75.2 [76-78]. However, Wuhan, BA.1.1, B.1.1.1, BA.1.1.172, 
B.1.1.7, B.1.617.2 and other early coronavirus lineages had no such 
deletion. Figure 9 showed that BA.4, BA.5, BF.7, BQ.1, XBB.1 lineages 
also had such deletions which caused N-protein three amino acids 

shorter (216AAs). Most importantly, previously we reported 26nt 
deletion in 3’-UTR in many Omicron lineages (BA.2, BA.4, BA.5) 
which made coronavirus very replication defective. Interestingly, 
we did not find 26nt deletion in BA.1 early omicron lineages or 
old Wuhan, Alpha, Beta, Gamma, Delta coronavirus variants. In 
Figure 10, we showed that XBB.1.1 lineages retained such deletion 
including XBB.1, XBB.2, XBB.1.16, XBB.1.22.1, BF.7, BQ.1, BQ.1.1 
and BQ.1.1.1 whereas spread of such variant likely increased than 
BA.2.75, BF.7 and BQ.1.1.1 subvariants.

Figure 9: Multi-alignment demonstration of 31ERS N-protein deletion in Omicron corona viruses but not in Alpha, 
Delta or Wuhan early coronaviruses. The other early VOCs like Beta, Gamma, Epsilon, Zeta also had no such 

deletion (data not shown).
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Figure 10: Multi-alignment demonstration of 26nt 3’-UTR deletion in most Omicron coronaviruses (BA.2.75, BA.4, 
BF.7, BQ.1, XBB.1.5.1) but such deletion was not reported in Alpha, Delta and Wuhan early coronaviruses. 

We showed the XBB.1.5.1 to XBB.1.5.39 specific mutations 
in most COVID-19 proteins in Table 1. We showed the part of 
the multi-alignment of spike protein RBD domain in Figure 11. 
Figure 11 also demonstrated Omicron BA.2 specific mutations 
(green arrows), XBB.1.5 specific mutations (blue arrows), N501Y 
mutation (green circle) and XBB.1.5.1 sub subvariants mutations 
(grey circles). Further, A411S (XBB.1.3), P463S (XBB.1.5.8), F456l 

(XBB.1.5.10), A475V (XBB.1.5.36) including A520S (XBB.1.22) 
and S408W (XBB.1.22.1) sub subvariant specific mutations were 
demonstrated (Table 1). Those sub sub variant specific mutations 
will be utilized to make subvariant specific oligonucleotides for the 
detection of unknown COVID-19 variants as well as to demonstrate 
the database penetration of those sub subvariants by BLAST search.
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Figure 11: Multi-alignment of spike protein RBD domain region to demonstrate Omicron BA.2 specific mutations 
(green arrows), XBB.1.5 specific mutations (blue arrows), N501Y mutation (green circle) and XBB.1.5.1 sub 

subvariants mutations (grey circles). 

Discussion
Five VOCs of SARS-CoV-2 mainly caused million deaths 

worldwide and named as B.1.1.7 (U.K.), B.1.351 (South Africa), P.1 
(Brazil), B.1.617.2 (India), and B.1.1.529 (Africa). The B.1.1.529 
variant was named Omicron which diverged into different BA.1, 
BA.2, BA.3, BA.4 and BA.5 lineages worldwide during 2022 with 
mild infections. Viral transactivator proteins regulate cellular genes 
to modulate immunogenicity and pathogenicity. As for example, 
in HIV retrovirus mediated pathogenesis, TAT, NEF and REV 
small proteins modulate its own transcription as well as human 
cellular genes. Similarly, preliminary reports indicated that corona 
virus ORF8 protein (121 AAs) acts as histone mimics disrupting 
chromatic structure with many epigenetic changes and immune 
modulator functions. ORF8 protein could inhibit MHC-1 and IFN-
beta functions due to some similarities to immunoglobulin domains 
and also modulate spike protein. A 382-nucleotide deletion (∆382) 
in the ORF8 region of the corona virus genome causes weak virus 
load and weak pathogenicity (accession no.MT374101) [78-83]. 

Previously, we showed that C>T base change at 27972nt and 
another A>T base change at 28095nt created two termination 
codons (CAA=TAA and AAA=TAA) to produce 26AA and 67AA long 
ORF8 truncated proteins. Further, S24L, V32L, P38S, R52I, A65V, 
Y73C, L84S, K92E and V100L mutations in the ORF8 gene located 
with or without TAA termination mutations. Thus, ORF8 gene is 
very proven to mutation disrupting its function which controls 
immunogenicity and virus clearance.

Over time, the coronavirus has undergone mutations and 
deletions and different variants reported in different parts of the 
world with different time since December 2019. We found no 
GGA=TGA termination codon mutation in Alpha (B.1.1.7), Beta 
(B.1.351), Gamma (P.1/B.1.1.28.1), Delta (B.1.617.2), Kappa 
(B.1.617.1), Epsilon (B.1.427/B.1.429), Zeta (P.2); Eta (B.1.525), 
Iota (B.1.526) and B.1.1.298 (Mink Variant). Spike mutations 
are of major health concerns, as they reportedly exacerbate the 
infectious rate of the virus as in D614G and N50Y mutations. We 
found here major ORF8 truncated mutant in XBB.1 and XBB.1.5 
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lineages which were rapidly spreading now. Interestingly, RNA 
recombination generated few omicron lineages similar to XBB 
which was generated due to recombination between BA.1.10 
and BA.2.75. Thus, XBB to XBB.1 and then XBB.1 to XBB.1.5 may 
be important but we characterized up to XBB.1.5.39 and in all we 
detected GGA=TGA termination codon mutation. 

Thus, present outbreaks occurred with a corona virus with 
ORF8 gene product deficient. We also know that in most Omicron 
corona viruses, a 26nt deletion was prominent and we do not find 
any report that an insertion in that 3’ UTR region has happened 
yet in Omicron lineages! Dominant mutation and deletion of small 
regulatory protein ORF7a limits viral suppression of the interferon 
response. We recently reported such deletions abolishing the 
production of both ORF7a and ORF7b proteins (see, accession no. 
OP711842). A WA1/BA.5 bivalent mRNA vaccine was inactive to 
kill BQ.1 and XBB.1 coronaviruses and titre against BQ and XBB 
subvariants were lower by 13-81fold and 66-155fold respectively 
as compared to Omicron BA.2 and BA.5 variants. Antiviral 
COVID-19 medications such as Paxlovid (Nirmatrelvir/Ritonsvir) 
and Remdesivir should still be effective against XBB.1.5 variant and 
both of these drugs will prevent virus replication as RdRp enzyme 
crucial function is not altered in XBB.1.5 [29,37].

The most sequences in SARS-CoV-2 database we analyzed 
were from USA (Howard, D. et al group) and we characterized 
some Bangladesh omicron data which confirmed that GGA=TGA 
termination codon was found in XBB.1 variant (accession no. 
OQ075411) but not in XBB variant (accession no. OQ075381) or 
XBB.2 variant (accession no. OQ075400). Interestingly, we also 
recently pinpointed round 400 147RWMD spike insertion mutants in 
US patients. We found three Northern Ireland (UK) based patients 
where such RWMD insertion was observed (accession numbers; 
OX527225, OX520545, OX486753). The 5’-UTR of SARS-CoV-2 
forms five hairpin structures and nsp1 protein bound to first stem 
and loop structure helping transport of nsp1 to ribosome. Thus, 
26nt 3’-UTR (29534-29870nt) S2M long stem-loop structure 
implicated in replication and other function in the coronavirus 
biology. The size of the genome has been changed from 29903nt 
to 29782nt. Thus, point mutation, deletion and insertion greatly 
affected coronavirus biology and WHO declared that recent isolates 
were no more so dangerous to cause death in COVID-19 infected 
individual [31,83].

HIV transactivator protein, TAT (71 AAs) binds to promoters 
of genes that are bound by the ETS1 transcription factor, the CBP 
histone acetyltransferase suggesting its role in regulating genes 
involved in T cell biology and immune response. Tat protein binds 
to TAR region where other cellular protein (puralpha) also docks. 
Further, Tat binds to breast cancer resistant protein implying its 
role in cancer pathogenesis. Nef protein (216 AAs) activates cellular 
Src and Tec tyrosine kinases after binding Nef-dimer to SH3-SH2 
domain of tyrosine kinases activating transcription of HIV. The Rev 
protein (129 AAs) was suggested as HIV RNA transporter and such 
function was inhibited by nuclear factor 90, a dsRNA binding host 
protein whereas other host proteins XPO1 (CRM1) and RBM14 may 
be involved [9,69].

Strikingly, ORF8 protein 62-77 residues has Ig-like domain 
and binds CD16a (FcγRIIIA) with high affinity. Such interaction 
lowers the activity of CD16 at the surface of monocytes and NK 
cells reducing the capacity of PBMCs and monocytes to mediate 
antibody-dependent cellular cytotoxicity and humoral responses 
The crystal structure of SARS-CoV-2 ORF8 reveals a ∼60-residue 
core polypeptides has potential similarity to ORF7a interface 
containing two dimerization interfaces and a covalent disulfide-
linked dimer through an N-terminal sequence, while a separate 
noncovalent interface is formed by a carboxy-terminal SARS-CoV-
2-specific sequence,  73YIDI76  . We found many deletions in the 
ORF7a protein also and thus both should be transactivator proteins 
absence of which markedly lower the pathogenicity. Unfortunately, 
although ORF7a and ORF8 NH2-terminal 40 AAs has 25% scattered 
similarities, no such minor similarity with TAT protein or other 
HIV transactivator proteins like Nef and Rev (data not shown). 
Never-the-less, the roles of ORF8 protein in COVID-19 replication 
and pathogenesis were emerging and absence of ORF8 protein 
due to termination codon mutation was now well established 
in XBB.1.5 and B.1.1.7 variants. Thus, translational suppression 
of ORF8 protein is a therapeutic method to control Corona virus 
pathogenicity [29,37].

Conclusion
Presently circulating XBB.1.5 sub subvariants (XBB.1.5.1-

XBB.1.5.39, XBB.1.16, XBB.1.22, XBB.1.9.1, XBB.1.9.2 etc) have 
GGA=TGA termination codon mutation in the ORF8 gene and such 
ORF8-deficent coronaviruses are less pathogenic. The 26nt deletion 
in the 3’-UTR, 24LPP and 140Y deletions in spike and 31ERS deletion in 
N-protein may be significant in such a process.
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